Respect the minds of people by going to where the action is – a fundamental rule of change management

All through my professional life, I have been connected to improving something on the shop floor — be it a machine, process or a quality problem.

And I have seen that it is very difficult to improve anything on the shop floor by just passing down verbal instructions or by commanding someone to do something or by conducting a training program in a classroom or handing over a well-documented piece of paper complete with all instructions and a to-do list.

In most cases, people don’t get the idea. As a result, workers on the shop floor soon lose interest in the improvement process and don’t like engineers and managers who just pass down orders sitting at their desks. Respect for engineers and engineering is soon lost. And improvements don’t take place. The company suffers as a result.

Respect for engineers and engineering comes from respecting the minds of workers and supervisors.

This is best done by engineers going down to the area of the shop floor where the improvement is to be made and then explain what they want the workers and supervisors to do and what exactly is to be done. It can be explained verbally by physically touching the parts or equipment where the improvements are to be made or through rough sketches quickly drawn on scraps of paper to instantly clarify the points.

This is an important point in making a change, which is often forgotten by engineers. I call this rule — ‘Respect the minds of people by going to where the action is.”

Attention — the Essential Energy to Achieve & Improve Anything.

Information enters our consciousness either because we intend to focus attention on it or as a result of attentional habits based on biological or social instructions.

For example, driving down the extremely busy and often chaotic streets of Kolkata, we pass by hundreds of cars without actually being aware of them. Their shape, size and colours might register for a fraction of a second, and then they are immediately forgotten the next moment.

But our primary objective is to reach from one place to another without an accident or suffering a scratch. But how do we achieve that goal?

So while driving, we occasionally notice a particular vehicle, perhaps because it is moving unsteadily between lanes or because it is moving too slowly or because it looks strange in some way.

The image of the unusual vehicle enters our focus of consciousness and we become intensely aware of it unusual behaviour.

In our minds, such visual information about the car (the abnormal behaviour) gets related to information about other errant cars stored in our memory, which helps us determine into which category the present instance fits. Is this an inexperienced driver, a rash driver, a drunken driver, a momentarily distracted (talking on a mobile phone) but competent driver?

As soon as the event is matched to an already known class of events, it is identified. Now it has to be evaluated: Is this something to worry about? If the answer is yes, then we must immediately decide on an appropriate course of action: Should we speed up, overtake, slow down, change lanes, stop?

All these complex mental operations must be completed quickly and in real time. But it doesn’t happen automatically. There seems to be a distinct process that makes such reactions possible. This process is called attention. It is attention that selects the relevant bits of information from a potential of thousands of bits available.

It takes attention to retrieve the appropriate references from memory, to evaluate the real-life event and then choose the right thing to do.

Despite its great powers, attention can’t step beyond the limits as already described. It can’t notice or hold in focus more information that can be processed simultaneously. Retrieving information from memory and bringing it into the focus of awareness, comparing information, evaluating, deciding — all make demands on the mind’s limited processing capacity. For instance, the driver who notices an errant car will have to stop talking on his cell phone if he wants to avoid an accident, which is, in fact, his goal.

Some people learn to use this priceless resource very efficiently while others simply waste it. The mark of a person who is in control of his/her consciousness is the ability to focus attention at will, to stay away from distractions, to concentrate as long as it takes to achieve a goal and not longer. The person who can do this effortlessly usually enjoys the normal course of everyday life and can effectively meet the challenges of everyday life.

Improving reliability of industrial equipment needs such keen attentional energy which Reliability Centred Maintenance helps one to achieve. It, of course, depends on how well a Reliability Centred Maintenance System is designed, developed and implemented.

But what is essential is the development of memory bank, which can be only developed through comprehensively designed training and education system run over a long period of time.

Computerised Maintenance systems, Condition Based Maintenance technology, rigorously developed Maintenance Planning, Internet of Things, Artificial Intelligence can all help but without a broad-based deep memory bank of different types of failures, failure modes, interactions and mechanisms that create failures, methods to detect failures, interpretation and evaluation of relevant information and deciding the right course of action –improving reliability of industrial systems would remain as a desire only,

Attention is the key to achieving desired outcomes and improving any system. It can’t be ignored.

 

By Dibyendu De

Case of Missing Gear Mesh Frequency

Question:

“Why don’t we see the Gear Mesh Frequency (GMF) on the output side of a splash lubricated slow speed gear box?”

This is quite puzzling since common sense dictates that such peaks should be present.

My Answer:

The principles involved are the following:

1. Air, water and oil produce turbulence when worked on by machines like pumps, gears, fans, propellers etc.
2. Such turbulence creates damping force.
3. This is proportional to the square of the velocity.
4. But this damping force acts in quite a funny manner.
5. For slow speed machines (say below 750 rpm; slower the better) damping is positive that is it goes against the motion and so neutralizes the entropy as seen by the decrease in the vibration levels. Hence the gear mesh frequencies vanish. Coriolis Effect on the output side of the gear box also helps in attenuating the vibration.
6. But for high speed machines damping is negative. That is it goes in the direction of the motion and therefore enhances the entropy as seen by the increase in the vibration levels.
7. So, for low speed machines it goes against the motion and suppresses the GMF. In some cases it suppresses the fundamental peak as is found in the case of the vertical Cooling Water Pumps of Power Plants. GMF is produced when the fundamental frequency is superimposed onto the vibration generated through gear impacts.
8. It therefore follows that for high speed gear boxes it magnifies both fundamental and GMF peaks.

Missing peaks therefore indicate fluid turbulence, which might also be indicated by other peaks like vane pass frequencies. The condition monitoring of such gear boxes might best be done through Wear Debris Analysis/Ferrography.

So, this is the mystery of the missing GMF in splash lubricated slow speed gear boxes.

Therefore, splash lubrication for a low speed gear box is a good idea. It enhances the life of the gear box since it balances the entropy in the system.

But at the same time, with higher oil level in a splash lubricated high speed gear box the vibration level would increase, specially the fundamental and the GMF. That would spell trouble.

Similarly, it is better to have a turbulent air flow in low speed fans and blowers. It suppresses the vibrations and therefore enhances the life of bearings.

Nature also uses these principles of fluid turbulence and damping? Applications?

1. Bird’s nest are made up of loosely placed twigs and leaves usually not bound to each other. But these don’t break up or fall off in turbulent winds. Damping keeps them in place and provides the necessary security to birds.

2. Swift flowing rivers allow fishes to grow bigger and better.

3. Winds, storms etc neutralize the increase in entropy.

Design Ideas for Reliability & Sustainability?

1. Low speed gear boxes might best be lubricated by splash lubrication.
2. High speed gear boxes might best be lubricated by spray lubrication
3. Hotter and turbulent air might best be handled by low speed fans and blowers.

Schematic to Understand and Resolve Vibration Problems.

Screen Shot 2017-10-23 at 9.44.29 AM

The above is a simple but comprehensive schematic to understand and resolve vibration problems of industries.

Applications:

  1. Resolving vibration problems
  2. Design
  3. Manufacturing
  4. Design Review
  5. Machine Testing
  6. Modeling

 

 

Fractional Gear Mesh Frequencies

Recently I received an email which asked me give my option on a phenomenon the analyst observed.

Quote

Observing high vibs on pressing and lifting pinion Drive End (DE) and Non Driven End (NDE) bearing on a ball mill. Motor and main Gear Box drive are OK. Clear predominant gear mesh frequency is appearing in the spectrum along with harmonics and side bands. But 1st GMF (Gear Mesh Frequency) is predominant. side bands with pinion speed is also seen. no Girth Gear speed side band was observed

Some of the vibration data, spectrums and photos shown in the attachment. Phase measurements indicate inconsistency in the readings near pressing pinion bearing. Impacts were also seen in time waveform data along with modulation.pinion speed 122 rpm.  On pressing side bearing 2.03 Hz side bands are seen, On lifting side i can see side bands spaced at 6.09 Hz (That is 3 times of pinion speed). Both Pinion lifting and pressing bearings are behaving differently. the vibs are high on DE as compared to NDE on both pinions. Can we suspect eccentric moment of the pinions with looseness. Why am i seeing 2.03 side bands on pressing and 6.09 side band on lifting side bearings. What is the significance of this. One sample of GG tooth photo shows uneven shining surface on either side (refer photo). In this case I am seeing  (30 T = 1 X 2 X 3 X 5) and (210 = 1 X 2 X 3 X 5 X 7) 2 X 3 X 5 as the common factor. Pinion 30 teeth and GG has 210 teeth. Will this create gear ratio issues uneven locking and releasing of 2 mating teeths. But no 1/2 or 1/3 or 1/5 GMF seen in the data.

Unquote

My reply was:

Quote:

But after a quick look this is what I see as the problem: –

1. We are seeing 1/2, 1/3 and 1/5 of GMF — these appear due to common factors 2, 3, 5 as you wrote.

This means that the pinion is badly worn out and as the common factor teeth mesh they generate these fractional frequencies.

It also means that the GMF and the natural frequency are not separated by 2.5 times. [The natural frequency in the horizontal direction = 28.5 Hz; natural frequency = 30.9 Hz; Gear Mesh Frequency = 60.6 Hz]

Looking at the signatures it is clear that the GMF falls within 2.5 times the natural frequencies.

Also note how the GMF (60.6 Hz) falls right between two natural frequencies in both the vertical and horizontal  directions. (31.1 Hz and 83 Hz). This makes the situation worse.

2. From the time waveform, we can see vibration relaxation waves. It means that the wear out or damage is towards the addendum region of the pinion/gear
3. This means that the spray nozzles are wrongly placed or jammed. The nozzles must be placed after the gear mesh not at or before the gear mesh. Also ask the client to check for jamming of the nozzles and the present viscosity of the grease/oil and the quantity that is fed per hour.
4. We can also suspect eccentricity of the pinion and looseness.
5. There is a strong resonance. This appears to have generated from the top cover.
Regards
Dibyendu De
dde@rgbwaves.com
9836466678
 Unquote
Deeper Lessons:

It is important to question as to what else we can do other than detect a problem or detect an incipient fault?

With the above analysis and information we can easily see the relationship between fractional GMF and lubrication and wear. It means we can build an algorithm that would warn us about an imperfect lubrication system that would in fact accelerate wear and put the system out of service.

Further, we can refine the specification of a purchase a gear box. The specification should state  — a) number of pinion teeth should be a prime number to prevent accelerated wear b) if a prime number can’t be achieved then the natural frequency in the three directions must be away from the GMF by at least 2.5 times the GMF.

Similarly, we can specify the gear box top cover natural frequency should be at least 4 times the GMF.

Scheduled running checks may include — a) rate of lubricant flow b) motor current c) placement of lubricant nozzles etc.

Untitled 3

 

Untitled 4

 

Untitled 5

Untitled 6

Untitled 7

Details of the case: (relevant data)

VIBRATION STUDIES OF CEMENT MILL

Steps for vibration measurements

Impact test was carried out at selected locations on the torsion bar to know its natural frequency
Normal vibration signatures were recorded with motor speed being 994 rpm and pinion speed 122 rpm

Vibration data was recorded on selected bearing locations of motor, gearbox and pinion bearings
Data was recorded along horizontal, vertical and axial direction with 90% load on the mill

Phase measurements were recorded to know the behavior of pinion DE with respect to pinion NDE of pressing and lifting side

OBSERVATIONS

Vibration signatures recorded on Pinion DE and NDE of both pressing and lifting side bearing shows predominant gear mesh frequency and its harmonics
Side bands were observed along with gear mesh frequency and its harmonics
Gear mesh frequency 60.9 Hz is appearing predominantly in all HVA direction

Time waveform recorded on pinion DE and NDE bearings clearly shows modulation which occurs due to above phenomena
Impacting of the gear teeth was also observed. Refer time plots provided in this report in subsequent pages

Only Side bands of pinion speed (2.03 Hz or 122 rpm) are seen, no side bands of Girth gear was seen in the data
The phase measurements recorded on pressing pinion DE and NDE along axial and horizontal direction shows the phase is not consistent with time suspecting looseness due to uneven movement of pinion

Vertical vibrations recorded on pinion DE bearing lifting side shows the vibrations are low (5 mm/sec) on one end while its high (11 mm/sec) on the other end even though it’s a common top cover of that bearing
For any normal 2 mating gears the selection of no. of teeth on each gear should be such that when factorizing is done no common factor should be found apart from 1

In this case pinion has 30 teeth and Girth gear has 210 teeth o Then as per calculations
Pinion 30=1x2x3x5,GG 210=1x2x3x5x7
So common factors are 2x3x5

 

 Untitled Untitled2
Untitled 8
Untitled 9

Would Lubrication Cause a Sudden Failure?

This case is about a sudden failure of cooling tower fan motor of a copper mine.

The motor failed almost immediately after Planned maintenance, which was just about lubricating the motor bearings.

What Happened?

Electrical department conducted a scheduled PM task on this piece of equipment on 25.05.17. After 3 hrs of running; motor Non Driven End (NDE) bearing was damaged.

When the motor was opened it was observed:

1. One of the poles was severely damaged.

2. Bearing cage was also found damaged and all roller elements were crushed.

 

Why did this happen? 
1. Sudden application of load or abrupt change in load. It happened when the machine was started after PM — i.e. starting the machine from rest under loaded condition.
2. This caused hunting of the motor in which a rotor starts seeking equilibrium position. Such an equilibrium is reached when the load torque is equal to the electromagnetic torque. This equilibrium position gets disturbed if a sudden change occurs in the load torque, which has been the case when the motor was started the after the motor was stopped to lubricate its bearings.
3. In this situation, the rotor slips too much, i.e. — the rotor moves around trying to find its steady state equilibrium state and in this process the rotor and stator touched and shorted — damaging one of the poles.
4. Point 1 to Point 3 describes the root cause of the case. A  broad at the base 1N (1 times running speed) peak was observed.  This indicates presence of rubbing and resonance.
5. Resonant frequency excited the resonant frequency of the NDE bearing  which caused complete collapse (crushing) of the motor NDE bearing.
6. Another point which is important to consider is the time taken for a freshly lubricated bearing to stabilise. After lubrication, an anti-friction bearing generally runs hot (temperature greater than 75 degrees C but lesser than 95 degrees C) for a few hours (5 to 6 hours at times) to stabilise to a normal operating condition; with a temperature around 65 degrees C. This phenomenon can abruptly and adversely affect vibration levels of the bearing.
Notes:

1. The vibration signature did not indicate lubrication starvation of the bearing.

Hence the question is — why stop a machine for re-lubrication when the activity isn’t needed at all?

2. In the future, if the system is stopped, then during start up it has to be ensured that the load is zero or near zero or it has to start at no-load condition.

If that isn’t possible, the system has to be started at low rpm and then the rpm can be gradually increased, all the while maintaining a steady state. It might take up to 6 hours for the system to stabilise after a bearing is lubricated.

By
Dibyendu De
dde@rgbwaves.com
9836466678

 

Corolisis Effect & Negative Damping – a Report

Report on Thaisen Fan (Scrubber)

img_0182

Brief description of the phenomenon:

After cleaning of the fan blades, vibration of the fan gradually increases during operation and in a span of 10 to 14 days vibration level reaches an unacceptable level, which necessitates the next cleaning cycle. However, for so long, this matched the scheduled production window provided by operation. However, after the recent changing of the rotor and the bearings, the fan now reaches unacceptable level of vibration within a short span of time that does not coincide with the scheduled “production window” of the operation, which causes “unplanned downtime.”

Goal of the investigation: To correct the imperfection in the system so that the fan cleaning cycle coincides with.the scheduled production window.

Result of the investigation:

 

1. The problem of rising vibration within a short period of time is an inherent problem (a birth defect) of the fan. The main reason is the Coriolis effect on the fan. Coriolis force is a force exerted by a moving fluid on the disc or impeller rotating in the fluid. If the rotation is CCW (counter clockwise) then the fluid moves to the right of the impeller and away from the centre. Similarly, when the impeller moves in the CW (clockwise direction) the fluid moves towards the left of the impeller and away from the centre.

In this case, with the fan moving in the CCW direction the Coriolis force moves toward the right of the impeller in the same direction as the damping force. This effect (the fan moves in the CCW direction) produces negative damping (since the two forces are in the same line of action).

Negative damping is a phenomenon, when damping force, which usually opposes the driving force, acts in the same direction as the driving force. In such a case the vibration of the system is amplified.

Combination of negative damping and Coriolis effect produces this phenomenon of gradually rising vibration of the fan in a short period of time, which goes away upon regular cleaning. In the present context nothing can be done to eliminate the phenomena of Coriolis Effect and Negative damping. However, if a similar system is to be installed in the future, we would be pleased to provide necessary suggestions and recommendations so that such phenomena are eliminated right from the start.

2. Present signatures indicate misalignment and dynamic imbalance

3. Weak foundations

Actions to be taken to increase the cleaning cycle to match scheduled “production window.”

Countermeasures

1. Take care to align the rotor properly. Care to be taken while putting shims.

2. Dynamically balance the fan in two planes to eliminate the imbalance

3. Cleaning cycle can be initiated when vibration of the fan on the bearings reaches 7 mm/sec (rms). It is safe to run the fan upto this point.

4. Monitor the condition of the foundation by taking vibration measurements in displacement and acceleration modes. Displacement should be taken in the horizontal direction on the topmost accessible point of the columns and at the base.  Acceleration should be taken in both vertical and horizontal directions. Displacement should not cross 50 microns in the horizontal direction or at the base of the columns. Similarly acceleration both in the vertical and horizontal directions must not cross 1.5 g. This would ensure safety of the equipment. In case it crosses corrective actions are to be taken to rectify the foundation.

Result:

After alignment and dynamic balancing in two planes vibrations came down to below 1 mm/sec and maintained its reliability till the next cleaning cycle (10 to 14 days) which matched the scheduled production window of operation — thus avoiding unplanned downtime.
Dibyendu De
dde@rgbwaves.com
9836466678

Speed Dependent Vibration

Speed dependent vibration is associated with forced mechanical vibration.

Application: rolls where the strips processed through the rolls exhibit roll chatter that leaves permanent imprint on the strip in the form of chatter (equally spaced markings of about 20 to 45 mm width) pattern. It is generally considered to be a defective product and often can’t be sold in the market.

The way to check the cause of such chatter patterns or marks is to take the vibration in displacement mode. When displacement increases by approximately 0.6 microns at the highest rolling speed it significantly points to surface roughness of the strip and so creates the pattern of chatter marking on the product (e.g. aluminium sheets). It indicates a loss of stiffness or the presence of variable stiffness, which may be coming from coupling, defective gears or from loose or defective anti-friction bearings.

Usually we may observe sidebands on either side of the forced vibration peak. The spacing of the sidebands is an exact multiple of the rotational frequency of the work roll. This is commonly seen for inner race defects where the inner race is rotating freely on the roll. The defect rotates through a variable load zone and produces a modulated time waveform. This is seen as a peak with sidebands in the vibration spectrum. Also pronounced on chocking and de-chocking.

Solutions:

  1. Reconditioning of the bearing races or replacement of bearings
  2. Improve the chocking operation.

This eliminates the strip chatter or markings.

 

Dibyendu De

dde@rgbwaves.com

9836466678

Misalignment

Typical Symptoms: High 1x in the axial direction and 2x in the radial directions; at time 3 x is also present in severe cases (e.g. when coupled to coupling imbalance).

Reasons for misalignment:

  1. Skill
  2. Thermal growth
  3. Movement of foundation

Types of misalignment:

  1. Parallel misalignment — we would find strong presence of 2x component in radial direction along with 1x in the axial direction.  This is because two opposing forces act together at the coupling — both trying to align the shafts to each other.
  2. Angular misalignment — we would find strong presence of 1x component in the radial direction along with strong 2x in the axial direction. This is because angular misalignment produces a bending moment on both shafts.
  3. However, vibration patterns don’t change in very predictable patterns as described in points 1 and 2 above. This is because there is usually a mix of the two different types of misalignment. In addition foundation problem and stiffness (directional or variable) create further complexity in the situation.
  4. The 1x and 2x components would be strong in the radial directions (V and H) but these components would be in phase.

Usually we would find high 1x peak in the axial direction with small 2x and 3x peaks depending on the “linearity” of the vibration. There may be both 1x and 2x (at times accompanied by 3x) in the radial directions.

Time waveform in the axial direction would be dominated by sinusoidal 1x vibration

Phase: Motor and say Pump would be out of phase axially due to angular misalignment (across the coupling in the same direction).

 

Dibyendu De

Eccentric Gears

Typical Symptoms: 1x radial (in Vertical and Horizontal directions)

Like eccentric pulleys, Eccentric gears generate strong 1x radial components, especially in the direction parallel to the gear.

They would also generate sidebands of the running speed of the eccentric gear around the GMF (gear mesh frequency). However, harmonics of GMF may also be generated (depends on the severity of the problem). Natural frequency might also be excited.

Time waveform: The waveform will have combination of 1x running speed of input and output shafts plus strong gear mesh vibration modulated by the running speed of the shaft having the eccentric gear.

Phase: Not applicable.