Misalignment

Typical Symptoms: High 1x in the axial direction and 2x in the radial directions; at time 3 x is also present in severe cases (e.g. when coupled to coupling imbalance).

Reasons for misalignment:

  1. Skill
  2. Thermal growth
  3. Movement of foundation

Types of misalignment:

  1. Parallel misalignment — we would find strong presence of 2x component in radial direction along with 1x in the axial direction.  This is because two opposing forces act together at the coupling — both trying to align the shafts to each other.
  2. Angular misalignment — we would find strong presence of 1x component in the radial direction along with strong 2x in the axial direction. This is because angular misalignment produces a bending moment on both shafts.
  3. However, vibration patterns don’t change in very predictable patterns as described in points 1 and 2 above. This is because there is usually a mix of the two different types of misalignment. In addition foundation problem and stiffness (directional or variable) create further complexity in the situation.
  4. The 1x and 2x components would be strong in the radial directions (V and H) but these components would be in phase.

Usually we would find high 1x peak in the axial direction with small 2x and 3x peaks depending on the “linearity” of the vibration. There may be both 1x and 2x (at times accompanied by 3x) in the radial directions.

Time waveform in the axial direction would be dominated by sinusoidal 1x vibration

Phase: Motor and say Pump would be out of phase axially due to angular misalignment (across the coupling in the same direction).

 

Dibyendu De

Advertisements

Eccentric Gears

Typical Symptoms: 1x radial (in Vertical and Horizontal directions)

Like eccentric pulleys, Eccentric gears generate strong 1x radial components, especially in the direction parallel to the gear.

They would also generate sidebands of the running speed of the eccentric gear around the GMF (gear mesh frequency). However, harmonics of GMF may also be generated (depends on the severity of the problem). Natural frequency might also be excited.

Time waveform: The waveform will have combination of 1x running speed of input and output shafts plus strong gear mesh vibration modulated by the running speed of the shaft having the eccentric gear.

Phase: Not applicable.

Eccentric Pulleys

Typical Symptom: High 1x in the direction parallel to belts. Though 1x component can be found on both Vertical and Horizontal directions.

Instead of the typical Vertical and Horizontal directions it is best to choose the directions parallel and perpendicular to the belts.

The high 1x can be found on both sub-assemblies (e.g. the motor and fan). Since the motor and the fan would run at different speeds we would also find two distinct peaks on the signature corresponding to the motor and fan running speeds. Confirmation about which pulley is eccentric can be obtained by removing the belts and checking for the presence of high 1x on motor in the direction parallel to the belts.

Time waveform would be sinusoidal when viewed in velocity.

Phase: Phase reading taken parallel and perpendicular to belts will either be in phase or 180 degrees out of phase.

 

Improving Inherent Reliability of a System

The inherent reliability of a system is determined by the system’s design. It means that the design of the system would determine the upper limit of reliability the system exhibits during operation. Suppose, for example, a system, with the best possible maintenance is able to achieve availability of say 90% we can say that this is the upper limit of the system’s capability that is determined by its design. A good “preventive maintenance” plan can never improve a systems inherent reliability. In other words, preventive maintenance, contrary to what many believe, cannot make a system “better”. It may, at best, only help realise the inherent reliability as determined by the physical design.

Hence the suggested process to “improve” the inherent reliability of a system, may be framed as follows: –

Understand the dynamics through tools like vibration analysis
Monitor changes and rate of change
Eliminate unnecessary maintenance tasks
Change the design of the system interactions to eliminate inherent “imperfections” and revise the maintenance plan.

In most cases, this would be the general approach.

Until we can effectively undertake some design changes (Design Out Maintenance – DOM) or take measures to eliminate inappropriate maintenance actions (Review of Equipment Maintenance – REM) it would not be possible to go beyond inherent reliability of an equipment, specially if it is undesirable in the business context. For example, a vertical pump of a power plant kept failing very frequently or had had to be stopped quite often when vibration shot beyond the trip limits. This behaviour of the system is determined by the design of the system. Unless the design (specifically the interactions between components) is corrected for improvement; the system (vertical pump) would continue to behave in that manner for all times. Likewise if the MTBF of a machine is say 90 days, it would not be possible to considerably improve the MTBF way beyond 90 days unless some undesirable interactions (which I call system “imperfections”) are corrected for improvement and a proper review of existing maintenance system is carried out. 

Such “imperfections” can be both physical and non-physical. Design features, most importantly, the interactions between physical/non-physical components are arguably the most important characteristic of a system that determine a system’s inherent reliability.

In addition, there are many physical design features that influence reliability like redundancy, component selection and the overall integration of various pieces of the system.

In the context of RCM, design extends far beyond the physical makeup of the system. There are a number of non-physical design features that can affect, sometimes profoundly, the inherent reliability of a system. Among these are operating procedures, errors in manufacturing, training and technical documentation. When a proper RCM analysis is conducted on a system or sub-system, there’s a good chance that the resulting maintenance actions will enable the system to achieve its inherent reliability as determined by its physical design features. However, if the inherent reliability is below user’s expectation or need then the design features are to be improved to achieve the desired level of inherent reliability.

Moreover, if unwarranted maintenance tasks are eliminated as it will greatly reduce the risk of suffering the Waddington Effect. There is also a good chance that if operating procedures, training, technical documentation and so forth are found to negatively impact inherent reliability, these issues will be identified and corrected. As evidenced by the Waddington Effect. In virtually every case, less than optimal, non-physical design features almost always have a negative impact on inherent reliability. Therefore, in RCM analysis a through review of existing maintenance plan (REM) along with DOM is necessary to improve inherent reliability of a system.

In brief, right amount of Condition Based Maintenance (CBM) tasks, Scheduled Inspections (which is a part of CBM activity) REM and DOM would not only help us realise the inherent reliability as determined by the physical design but also improve it, if the original inherent reliability is below business expectation.

 

Dibyendu De

Eccentric Stator

General Symptom: 2Lf (Lf = Line frequency)

Stator problems would create high vibration at 2Lf. Stator eccentricity produces uneven stationary air gap between the rotor and stator that produces a very directional source of vibration.

Soft foot is often the cause of eccentric stator.

Other key indicators:

  1. 2Lf peak would be comparably high
  2. For a 2 pole motor this peak would be close to 2N (N= running speed). Would need sufficient resolution to separate them
  3. A spectrum may reveal beating — 2Lf and 2N peaks may appear to rise and fall if we don’t have sufficient resolution to separate them.
  4. Time waveform  — a combination of 2N and 2Lf would reveal a beat type pattern if the time period covers more than a few seconds. If the time period isn’t long enough, then we would see a wobble or take on the classic M or W shapes due to combination of 1N, 2N and 2Lf.
  5. Thermal images would reveal heat bands in the direction perpendicular to the direction of high vibration
  6. Vibration would be highest at the point where the stator is closest to the rotor. Move the accelerometer around the motor housing to see if the peak is high in one or two locations.

Dibyendu De

Eccentric rotor

Symptom: Pole pass sidebands around 1x N (N=running speed) and 2xLf (Lf = line frequency)

Eccentric rotors will produce a rotating variable air gap between the rotor and the stator which induces a pulsating source of vibration. We would see 2xLf. However, there will also be pole pass sidebands around the 2xLv and 1xN peaks. 1xN is expected to be high.

Note: Pole pass frequency is the slip frequency times the number of poles. The slip frequency is the difference (in terms of frequency) between the actual RPM and the synchronous speed.

Presence of pole pass sidebands around 1N and 2Lf is the key indicator of this fault. One needs sufficient resolution to see those sidebands. Else we would either miss them altogether or mistake them for resonance (a broadening of the base of the peak).

Waveform: Time waveform that covers many seconds of time will reveal the pole pass frequency modulation. Due to lack of impacting the waveform will smooth and will be a combination of the 1N and 2Lf frequencies of vibration.

Phase: Not applicable for this fault unless eccentric forces are high in magnitude.

 

Dibyendu De

Rotor Bow

General symptom: 1x radial (Vertical and Horizontal direction of horizontal machines)

Usually a rotor bow in a motor looks like a static imbalance. Broken bars and loose connections (at motor terminals and at MCC) cause motors to heat up (localized) owing to uneven current flow through the phases causing rotor bow — uneven weight distribution around the rotor’s centreline. Hence we see high amplitude peak at 1x running speed in the radial and horizontal directions.

Localized overheating can be seen on the motor body through infrared thermal imaging.

The effect of can also be seen on the rotating air gap — a high peak at 2xLf with pole pass sidebands around 1x and 2x peaks. The 2x peak often comes up when the effect is more severe.

The time waveform would be sinusoidal when viewed in velocity.

Phase: expect 90 degree shift between vertical and horizontal axes. The inner race will move in and out once per revolution with a bent shaft

Note on Raised “Noise Floor”

In a spectrum, if the entire noise floor is raised, it is possible that we have a situation of extreme bearing wear.

If the noise is biased towards the higher frequencies in the spectrum then we may have process or flow problem like possible cavitation, which may be further confirmed by high acceleration measurement (or filtered acceleration measurement) on the pump body on the delivery side (since high frequency waves are always localized).

Smaller “humps” may be due to resonance (possibly excited by anti-friction bearing damage, cavitation, looseness, rubs or impacts) or closely spaced sidebands arising from other defects. A high resolution measurement (or graphical zoom and a log scale) may reveal whether the source is problems that exhibit sidebands or a problem of resonance. If  machine speed can be changed, (for e.g.motor connected to VFD drives) the resonant frequency would not move – but the other peaks would. Sidebands will typically be symmetrical around a dominant peak – e.g. 1X, 2X, 2x LF (100 or 120 Hz) etc indicating different faults.

Interestingly, the time waveform would reveal the reason as to why the noise floor has been raised.

We would see signs of looseness, severe bearing wear, rubs, and other sources of impacts in the time waveform. We must make sure that there are 5 – 10 seconds of time waveform if we suspect an intermittent rub (e.g. white metal bearings of vertical pumps or loose electrical connection of motor terminals) or if we suspect flow turbulence or cavitation.

If the time waveform looks normal (making sure there is a high Fmax (following Niquist criteria) and we view the waveform in units of acceleration then increase the resolution in the spectrum to 3200 lines or higher in case we are seeing a family of sidebands (like the sidebands we find around gear mesh frequency or rotor bars).

But if a natural frequency is being excited (necessary condition for resonance) then we have to perform a bump/impact test or a run-up/coast down test to confirm the situation.

Structure of a 2 day workshop on RCM

Day 1 
Session 1 – Introduction to RCM, History and 7 Questions
* Definition of Reliability, RCM and the 7 Vital Questions
* Maintenance Strategies
* Waddington Effect
* Nowlan & Heap’s Failure Patterns
* Inherent Reliability and its improvement strategy
Session 2 — Operating Context and Functions 
* Introduction to Operating Context
* Operating Context for a System
* Elements to be included
* Operating Context and Functions
* 5 general operating context
* Operating Context and Functional Failures
Session 3 – Failure Modes and Failure Effects  
* Introduction to Failure Modes
* Few thoughts about data
* Exploring Failure Modes
* 4 Rules for Physical Failure Modes
* Failure Effect
* Evidence that failure is occurring
Session 4 — Failure Consequence and Risk 
* Introduction to Decision Diagram
* Risk assessment — how each failure matter
* Is the function hidden or Evident
* Relation of time and Hidden vs Evident
* Safety and Environmental Consequences
* Operational and non-operational Consequences
Day 2 
Session 5 — Strategies and Proactive Tasks 
* Introduction to Proactive Tasks and PF interval
* CBM/On-condition tasks
* Scheduled Restoration and Scheduled Discard Tasks
* Determining Task Effectiveness
* Risk and Tolerability
* General Rules for following the decision diagram
Session 6 — Default Actions 
* Introduction to Default Actions
* Default tasks for hidden failures
* Failure Finding Task
* Failure finding Interval
* Design Out Maintenance — to do or to be
* Walk around checks with right timing
Session 7 — RCM Audits 
* Introduction to Audits
* Fundamental of Technical Audit
* Technical Audit process
* Fundamentals of Management Audit
* General Management Audit process
* What RCM achieves
Session 8 — Setting up a Successful Living Program 
* Using the power of facilitated group
* RCM Training
* Knowledge development and its process
* Failure Modes and Design Maturity
* RCM during scale up or expansion
* Summary and Conclusion

The Sad Story of the HFO pump

This is a HFO (Heavy Fuel Oil) screw pump used in Power Plant for running boilers. There was a catastrophic failure of the pump. Though this pump was regularly monitored by vibration (in velocity mode — mm/sec) it didn’t give any indication of the impending failure.

The screws of the pump rubbed against each other and the case hardened layers of both screws were crushed. The force was so great that the body of the pump also cracked. Evidence of corrosion was also noticed.

What caused it? 

For want of HFO oil, the plant personnel were forced to pump LDO (Light Diesel Oil) through this HFO pump for the past one year.

Hence the I, A, R factors that contributed to this catastrophic failure are the following:

Initiator(s)I — factor(s), which triggers the problem — low viscosity of LDO compared to that of HFO was the significant ‘initiator’ in this case. While viscosity of LDO ranges from 2.5 to 5 cSt, the viscosity of HFO varies between 30 to 50 cSt (depending on the additives used). Use of lower viscosity oil ensured metal to metal contact thereby increasing Hertz stress that led to collapse of the hardened layer of the screws.

Accelerator(s)A — factor(s), which accelerates the process of failure —  a) Indian HFO does not contain friction modifiers such as vanadium and magnesium. Their absence causes higher friction between the screws (approximately 70 times increase in friction), which accelerates the wear process. b) Moreover, presence of vanadium and magnesium additives in HFO and LDO acts as anti-corrosive agents. Notice that the failure happened a year after the management decided to pump LDO rather than HFO through the HFO pump — enough time for corrosion to take effect. So, we may say that there are at least two factors that accelerated the failure process. There are other effects too on system performance, which we shall discuss in a moment (refer “Note”).

Retarder(s)R — factors that slow down the failure process — a) surface finish of the screws b) right clearance of the bearings c) presence of chromium in the screws.

Surface finish plays a very important role in reduction of metal to metal friction and also allows fluid film development. Ideally the surface finish should be between 3 to 6 microns CLA (Centre Line Average) for best effect. This can be introduced as a specification of the MOC (Material of Construction).

Similarly, excessive clearance in bearings would modify the hertz stress zone or profile — both in width and depth, which would cause shear of the hard layer (depth of which depends on the type of hardening and the type of steel used) and the soft layer (core material). Depth and type of hardening might also be specified in the MOC to prevent failures and extend life of the equipment. Presence of chromium in the metal would help formation of Vanadium – Oxygen – Chromium bond which would effectively enhance the life by providing better lubricating property which in turn would ensure a high level of  reliability of the equipment.

Hence, once the I, A and R s are identified appropriate measures can be taken to modify maintenance plan, MOC etc to ensure long life of the equipment without negative safety consequences (heart of reliability improvement).

Example:

  1. Specify addition of Vanadium and Magnesium in the HFO during supply or these may be added at site after receipt of supply. (Material specification during purchase)
  2. Ensure the right viscosity of oil to be pumps through HFO pumps. (Monitor viscosity of the supply oil — not higher than 50 cSt and not lesser than 30 cSt)
  3. Specify surface roughness of the screws — 3 to 6 microns (CLA).
  4. Specify depth of hardness of the screws (below 580 microns so that the interface between the hard layer and the soft core remains unaffected by the Hertz stress) during procurement and supply. Preferable type of hardening of the screws would be nitriding.
  5. Specify chromium percentage in the screws (during purchase).
  6. Monitor bearing clearance on a regular basis and change as needed (by vibration analysis based on velocity and acceleration parameters).
  7. Monitor the body temperature of the pump to notice adverse frictional effects
  8. Monitor growth of incipient failures in the screws by vibration monitoring (acceleration and displacement parameters)

Note

1. (Effect of IAR on system performance — i.e. the boiler – superheater – pipes):

Problems of high temperature corrosion and brittle deposits drastically impair the performance of high-capacity steam boiler of Power Plants, using HFO. Research* shows that heavy fuel oil (HFO) can be suitably burned in high capacity boilers. However, if HFO is chemically treated with an anticorrosive additives like Vanadium and Magnesium, it diminishes high temperature corrosion that affect some operational parameters  such as the pressure in furnace and pressure drop in superheaters and pipe metal temperature, among others like atomization and combustion processes. Therefore, inclusion of right additives like Vanadium and Magnesium have been found to diminish high-temperature corrosion and improved system performance.  It therefore makes sense to monitor these parameters, which can provide direct information on the degree of fouling, as well as of the effectiveness of the treatment during normal boiler operating conditions.

*Source

2. Effect of Vanadium Oxide nano particles on friction and wear reduction

Ref:

  1. Two approaches to improving Plant Reliability:
  2. Rethinking Maintenance Strategy:
  3. Applying IAR Technique:

By Dibyendu De