Would Lubrication Cause a Sudden Failure?

This case is about a sudden failure of cooling tower fan motor of a copper mine.

The motor failed almost immediately after Planned maintenance, which was just about lubricating the motor bearings.

What Happened?

Electrical department conducted a scheduled PM task on this piece of equipment on 25.05.17. After 3 hrs of running; motor Non Driven End (NDE) bearing was damaged.

When the motor was opened it was observed:

1. One of the poles was severely damaged.

2. Bearing cage was also found damaged and all roller elements were crushed.

 

Why did this happen? 
1. Sudden application of load or abrupt change in load. It happened when the machine was started after PM — i.e. starting the machine from rest under loaded condition.
2. This caused hunting of the motor in which a rotor starts seeking equilibrium position. Such an equilibrium is reached when the load torque is equal to the electromagnetic torque. This equilibrium position gets disturbed if a sudden change occurs in the load torque, which has been the case when the motor was started the after the motor was stopped to lubricate its bearings.
3. In this situation, the rotor slips too much, i.e. — the rotor moves around trying to find its steady state equilibrium state and in this process the rotor and stator touched and shorted — damaging one of the poles.
4. Point 1 to Point 3 describes the root cause of the case. A  broad at the base 1N (1 times running speed) peak was observed.  This indicates presence of rubbing and resonance.
5. Resonant frequency excited the resonant frequency of the NDE bearing  which caused complete collapse (crushing) of the motor NDE bearing.
6. Another point which is important to consider is the time taken for a freshly lubricated bearing to stabilise. After lubrication, an anti-friction bearing generally runs hot (temperature greater than 75 degrees C but lesser than 95 degrees C) for a few hours (5 to 6 hours at times) to stabilise to a normal operating condition; with a temperature around 65 degrees C. This phenomenon can abruptly and adversely affect vibration levels of the bearing.
Notes:
1. The vibration signature did not indicate lubrication starvation of the bearing.

Hence the question is — why stop a machine for re-lubrication when the activity isn’t needed at all?

2. In the future, if the system is stopped, then during start up it has to be ensured that the load is zero or near zero or it has to start at no-load condition.

If that isn’t possible, the system has to be started at low rpm and then the rpm can be gradually increased, all the while maintaining a steady state. It might take up to 6 hours for the system to stabilise after a bearing is lubricated.

By
Dibyendu De

 

Advertisements

Corolisis Effect & Negative Damping – a Report

Report on Thaisen Fan (Scrubber)

img_0182

Brief description of the phenomenon:
After cleaning of the fan blades, vibration of the fan gradually increases during operation and in a span of 10 to 14 days vibration level reaches an unacceptable level, which necessitates the next cleaning cycle. However, for so long, this matched the scheduled production window provided by operation. However, after the recent changing of the rotor and the bearings, the fan now reaches unacceptable level of vibration within a short span of time that does not coincide with the scheduled “production window” of the operation, which causes “unplanned downtime.”

Goal of the investigation: To correct the imperfection in the system so that the fan cleaning cycle coincides with.the scheduled production window.

Result of the investigation:

1. The problem of rising vibration within a short period of time is an inherent problem (a birth defect) of the fan. The main reason is the Coriolis effect on the fan. Coriolis force is a force exerted by a moving fluid on the disc or impeller rotating in the fluid. If the rotation is CCW (counter clockwise) then the fluid moves to the right of the impeller and away from the centre. Similarly, when the impeller moves in the CW (clockwise direction) the fluid moves towards the left of the impeller and away from the centre.

In this case, with the fan moving in the CCW direction the Coriolis force moves toward the right of the impeller in the same direction as the damping force. This effect (the fan moves in the CCW direction) produces negative damping (since the two forces are in the same line of action).

Negative damping is a phenomenon, when damping force, which usually opposes the driving force, acts in the same direction as the driving force. In such a case the vibration of the system is amplified.

Combination of negative damping and Coriolis effect produces this phenomenon of gradually rising vibration of the fan in a short period of time, which goes away upon regular cleaning. In the present context nothing can be done to eliminate the phenomena of Coriolis Effect and Negative damping. However, if a similar system is to be installed in the future, we would be pleased to provide necessary suggestions and recommendations so that such phenomena are eliminated right from the start.

2. Present signatures indicate misalignment and dynamic imbalance

3. Weak foundations

Actions to be taken to increase the cleaning cycle to match scheduled “production window.”

1. Take care to align the rotor properly. Care to be taken while putting shims.

2. Dynamically balance the fan in two planes to eliminate the imbalance

3. Cleaning cycle can be initiated when vibration of the fan on the bearings reaches 7 mm/sec (rms). It is safe to run the fan upto this point.

4. Monitor the condition of the foundation by taking vibration measurements in displacement and acceleration modes. Displacement should be taken in the horizontal direction on the topmost accessible point of the columns and at the base.  Acceleration should be taken in both vertical and horizontal directions. Displacement should not cross 50 microns in the horizontal direction or at the base of the columns. Similarly acceleration both in the vertical and horizontal directions must not cross 1.5 g. This would ensure safety of the equipment. In case it crosses corrective actions are to be taken to rectify the foundation.

5. After alignment and dynamic balancing in two planes it is expected that the cleaning cycle would reach the desired interval of 10 to 14 days which would match the scheduled production window of operation — thus avoiding unplanned downtime.
Dibyendu De

Speed Dependent Vibration

Speed dependent vibration is associated with forced mechanical vibration.

Application: rolls where the strips processed through the rolls exhibit roll chatter that leaves permanent imprint on the strip in the form of chatter (equally spaced markings of about 20 to 45 mm width) pattern. It is generally considered to be a defective product and often can’t be sold in the market.

The way to check the cause of such chatter patterns or marks is to take the vibration in displacement mode. When displacement increases by approximately 0.6 microns at the highest rolling speed it significantly points to surface roughness of the strip and so creates the pattern of chatter marking on the product (e.g. aluminium sheets). It indicates a loss of stiffness or the presence of variable stiffness, which may be coming from coupling, defective gears or from loose or defective anti-friction bearings.

Usually we may observe sidebands on either side of the forced vibration peak. The spacing of the sidebands is an exact multiple of the rotational frequency of the work roll. This is commonly seen for inner race defects where the inner race is rotating freely on the roll. The defect rotates through a variable load zone and produces a modulated time waveform. This is seen as a peak with sidebands in the vibration spectrum. Also pronounced on chocking and de-chocking.

Solutions:

  1. Reconditioning of the bearing races or replacement of bearings
  2. Improve the chocking operation.

This eliminates the strip chatter or markings.

 

Dibyendu De

Bent Shaft

General Symptoms:

  1. High overall vibration in the axial direction in displacement and velocity parameters
  2. Generally we would get 1N in the axial direction if the bend in at the centre of the shaft
  3. We may also get 2N in the axial direction if the bend in near to the coupling.
  4. Vertical and Horizontal axis measurements will also often reveal peaks at 1N and 2N but the key to catch a bent shaft is to pay attention to what we get in the axial direction.

Reasons of bending:

  1. Excessive heat. E.g. in motors that are overheated for various reasons, like for example, loose connections of the terminals. Also refer to the problem of Rotor Bow .. here.
  2. Physically bent or run out
  3. Sag of a long shaft — also called catenary. For example — turbine shaft.
  4. Half critical speed — a phenomenon seen in horizontal machines operating close to the earth’s resonant frequency

Phase:

Phase measurement is an effective test to confirm presence of bent shaft. Phase at 1N measured in the axial direction at opposite ends of the components will be 180 degrees out of phase.

However, if the phase measurements are taken around the shaft we would find that they are all in phase since the shaft will appear to be moving back and forth in the axial direction.

Spectrum:

In addition to the prominent presence of 1N and 2N in the axial direction we would also find higher than normal 1N and 2N peaks in the radial directions.

Time waveform:

In this case time waveform would not prove to be a good indicator for bent shaft. However, a sinusoidal waveform is expected in the axial direction if the vibration is predominately 1N. In the case of a predominate presence of 2N there would be a “wobble” depicting the classic “M” or “W” pattern depending on the phase angle, if the bend is closer to the coupling.

by

Dibyendu De

 

 

 

Misalignment

Typical Symptoms: High 1x in the axial direction and 2x in the radial directions; at time 3 x is also present in severe cases (e.g. when coupled to coupling imbalance).

Reasons for misalignment:

  1. Skill
  2. Thermal growth
  3. Movement of foundation

Types of misalignment:

  1. Parallel misalignment — we would find strong presence of 2x component in radial direction along with 1x in the axial direction.  This is because two opposing forces act together at the coupling — both trying to align the shafts to each other.
  2. Angular misalignment — we would find strong presence of 1x component in the radial direction along with strong 2x in the axial direction. This is because angular misalignment produces a bending moment on both shafts.
  3. However, vibration patterns don’t change in very predictable patterns as described in points 1 and 2 above. This is because there is usually a mix of the two different types of misalignment. In addition foundation problem and stiffness (directional or variable) create further complexity in the situation.
  4. The 1x and 2x components would be strong in the radial directions (V and H) but these components would be in phase.

Usually we would find high 1x peak in the axial direction with small 2x and 3x peaks depending on the “linearity” of the vibration. There may be both 1x and 2x (at times accompanied by 3x) in the radial directions.

Time waveform in the axial direction would be dominated by sinusoidal 1x vibration

Phase: Motor and say Pump would be out of phase axially due to angular misalignment (across the coupling in the same direction).

 

Dibyendu De

Eccentric Gears

Typical Symptoms: 1x radial (in Vertical and Horizontal directions)

Like eccentric pulleys, Eccentric gears generate strong 1x radial components, especially in the direction parallel to the gear.

They would also generate sidebands of the running speed of the eccentric gear around the GMF (gear mesh frequency). However, harmonics of GMF may also be generated (depends on the severity of the problem). Natural frequency might also be excited.

Time waveform: The waveform will have combination of 1x running speed of input and output shafts plus strong gear mesh vibration modulated by the running speed of the shaft having the eccentric gear.

Phase: Not applicable.

Eccentric Pulleys

Typical Symptom: High 1x in the direction parallel to belts. Though 1x component can be found on both Vertical and Horizontal directions.

Instead of the typical Vertical and Horizontal directions it is best to choose the directions parallel and perpendicular to the belts.

The high 1x can be found on both sub-assemblies (e.g. the motor and fan). Since the motor and the fan would run at different speeds we would also find two distinct peaks on the signature corresponding to the motor and fan running speeds. Confirmation about which pulley is eccentric can be obtained by removing the belts and checking for the presence of high 1x on motor in the direction parallel to the belts.

Time waveform would be sinusoidal when viewed in velocity.

Phase: Phase reading taken parallel and perpendicular to belts will either be in phase or 180 degrees out of phase.

 

Improving Inherent Reliability of a System

The inherent reliability of a system is determined by the system’s design. It means that the design of the system would determine the upper limit of reliability the system exhibits during operation. Suppose, for example, a system, with the best possible maintenance is able to achieve availability of say 90% we can say that this is the upper limit of the system’s capability that is determined by its design. A good “preventive maintenance” plan can never improve a systems inherent reliability. In other words, preventive maintenance, contrary to what many believe, cannot make a system “better”. It may, at best, only help realise the inherent reliability as determined by the physical design.

Hence the suggested process to “improve” the inherent reliability of a system, may be framed as follows: –

Understand the dynamics through tools like vibration analysis
Monitor changes and rate of change
Eliminate unnecessary maintenance tasks
Change the design of the system interactions to eliminate inherent “imperfections” and revise the maintenance plan.

In most cases, this would be the general approach.

Until we can effectively undertake some design changes (Design Out Maintenance – DOM) or take measures to eliminate inappropriate maintenance actions (Review of Equipment Maintenance – REM) it would not be possible to go beyond inherent reliability of an equipment, specially if it is undesirable in the business context. For example, a vertical pump of a power plant kept failing very frequently or had had to be stopped quite often when vibration shot beyond the trip limits. This behaviour of the system is determined by the design of the system. Unless the design (specifically the interactions between components) is corrected for improvement; the system (vertical pump) would continue to behave in that manner for all times. Likewise if the MTBF of a machine is say 90 days, it would not be possible to considerably improve the MTBF way beyond 90 days unless some undesirable interactions (which I call system “imperfections”) are corrected for improvement and a proper review of existing maintenance system is carried out. 

Such “imperfections” can be both physical and non-physical. Design features, most importantly, the interactions between physical/non-physical components are arguably the most important characteristic of a system that determine a system’s inherent reliability.

In addition, there are many physical design features that influence reliability like redundancy, component selection and the overall integration of various pieces of the system.

In the context of RCM, design extends far beyond the physical makeup of the system. There are a number of non-physical design features that can affect, sometimes profoundly, the inherent reliability of a system. Among these are operating procedures, errors in manufacturing, training and technical documentation. When a proper RCM analysis is conducted on a system or sub-system, there’s a good chance that the resulting maintenance actions will enable the system to achieve its inherent reliability as determined by its physical design features. However, if the inherent reliability is below user’s expectation or need then the design features are to be improved to achieve the desired level of inherent reliability.

Moreover, if unwarranted maintenance tasks are eliminated as it will greatly reduce the risk of suffering the Waddington Effect. There is also a good chance that if operating procedures, training, technical documentation and so forth are found to negatively impact inherent reliability, these issues will be identified and corrected. As evidenced by the Waddington Effect. In virtually every case, less than optimal, non-physical design features almost always have a negative impact on inherent reliability. Therefore, in RCM analysis a through review of existing maintenance plan (REM) along with DOM is necessary to improve inherent reliability of a system.

In brief, right amount of Condition Based Maintenance (CBM) tasks, Scheduled Inspections (which is a part of CBM activity) REM and DOM would not only help us realise the inherent reliability as determined by the physical design but also improve it, if the original inherent reliability is below business expectation.

 

Dibyendu De

Eccentric rotor

Symptom: Pole pass sidebands around 1x N (N=running speed) and 2xLf (Lf = line frequency)

Eccentric rotors will produce a rotating variable air gap between the rotor and the stator which induces a pulsating source of vibration. We would see 2xLf. However, there will also be pole pass sidebands around the 2xLv and 1xN peaks. 1xN is expected to be high.

Note: Pole pass frequency is the slip frequency times the number of poles. The slip frequency is the difference (in terms of frequency) between the actual RPM and the synchronous speed.

Presence of pole pass sidebands around 1N and 2Lf is the key indicator of this fault. One needs sufficient resolution to see those sidebands. Else we would either miss them altogether or mistake them for resonance (a broadening of the base of the peak).

Waveform: Time waveform that covers many seconds of time will reveal the pole pass frequency modulation. Due to lack of impacting the waveform will smooth and will be a combination of the 1N and 2Lf frequencies of vibration.

Phase: Not applicable for this fault unless eccentric forces are high in magnitude.

 

Dibyendu De

Rotor Bow

General symptom: 1x radial (Vertical and Horizontal direction of horizontal machines)

Usually a rotor bow in a motor looks like a static imbalance. Broken bars and loose connections (at motor terminals and at MCC) cause motors to heat up (localized) owing to uneven current flow through the phases causing rotor bow — uneven weight distribution around the rotor’s centreline. Hence we see high amplitude peak at 1x running speed in the radial and horizontal directions.

Localized overheating can be seen on the motor body through infrared thermal imaging.

The effect of can also be seen on the rotating air gap — a high peak at 2xLf with pole pass sidebands around 1x and 2x peaks. The 2x peak often comes up when the effect is more severe.

The time waveform would be sinusoidal when viewed in velocity.

Phase: expect 90 degree shift between vertical and horizontal axes. The inner race will move in and out once per revolution with a bent shaft