Two approaches to improve — Plant wide Equipment Reliability

The first approach is to conduct a series of training programs along with hand-holding. During such programs, participants apply the concepts discussed in the programs on the critical machines to modify the existing maintenance plan or methods to improve equipment reliability over a period of time. It is effective if the organization fulfills two vital conditions. First, the organization has in place a reasonably competent condition monitoring team and the use of condition based maintenance strategy is quite widespread in its acceptance and application throughout the plant. Second, the number of failures/component replacement in the plant in a year is not more than say 60. We would call this method — The Interactive Training Method.
The second approach is a more hands-on, direct and intensely collaborative. Each critical equipment is thoroughly examined in its dynamic condition to find out its inherent imperfections that cause failures to happen. Such imperfections, once identified by deep study, are then systematically addressed eliminate the existing and potential failure modes to improve MTBF and Safety. Based on the findings, the maintenance plan is formulated or appropriately modified to sustain the gains of implementing the findings. This activity is to be done during the program. This approach is effective when the failure rate in the plant is random and high (more than 60 failures/component replacement in a year) and/or maintenance load is heavy and repetitive along with high maintenance cost in spite of having a reasonably equipped condition monitoring team in place. We would call this — The Deep Dive Approach.   
 
Outline of the two methods: — The processes involved along with approximate costs. 
 
The Interactive Training Method:  
 
1. Such training sessions are conducted once every two months for a duration of 4 days each over a period of 24 months.
2. The training programs would essentially focus on the following == a) the RCM process focussed on Failure Modes b) Vibration Analysis c) Lubrication analysis and management d) Bearing failures and practical reasons e) Root Cause Failure Analysis method — FRETTLSM method. f) Friction, Wear Flow, Heat, g) Foundations and Structures. h) Condition Monitoring of Electrical failures i) Maintenance Planning based on nature of Failure Modes j) Life Cycle Costing k) Auditing RAMS (Reliability, Availability, Maintainability and Safety).that would help in self auditing the process — in total 12 programs
3. Accordingly, there would be 12 visits to the plant. During each visit one of the above topics would be covered. Once the improvement concepts are delivered, the participants (assigned for focussed plant improvement) would collaboratively engage in designing appropriate measures to improve or modify the existing maintenance plan of each critical machine to improve its MTBF and Safety. This activity that involves a fair amount of handholding would be done during the visit. Number of critical machines to be taken up for each visit would be decided by the management or participants. Number of participants = 10 maximum
4. Subsequent paid audits to refine the process would be optional — after the completion of 24 months intervention period.
The Deep DIve Approach:  
 
Such interactive sessions would be conducted once every two months for a duration of 4 days each over a period of 18 months.
2. Each interactive session of 4 days duration would focus on one critical equipment at a time. In total 9 critical equipment would be covered during the 18 months period with a selected group of people, assigned to the project of improving reliability. During each sessions each of the critical equipment would be examined deeply and in totality to find the inherent imperfections that cause different failures in the system.Once, these imperfections are identified, time is taken to appropriately address the “imperfections” and simultaneously formulate or modify the existing equipment maintenance plan for sustaining the gains on an on-going basis. This collaborative activity would be done during the program. In this process, participants learn by doing.
3. In total there would be 9 visits to the plant. During each visit one critical equipment would be taken up for the deep dive study taken to its full logical conclusion. Number of participants = 10 maximum.
4. Subsequent paid audits of the progress is optional.- after the completion of 18 months intervention period.
Advertisements

Rethinking Maintenance Strategy

As of now, maintenance strategy looks similar to strategy taken by the medical fraternity in themes, concepts and procedures.

If things go suddenly wrong we just fix the problem as quickly as possible. A person is healthy to the point when the person becomes unhealthy.

That might work fine for simple diseases like harmless flu, infections, wounds and fractures. And it is rather necessary to do so during such infrequent periods of crisis.

But that does not work for more serious diseases or chronic ones.

For such serious and chronic ones either we go for preventive measures like general cleanliness, hygiene, food and restoring normal living conditions or predictive measures through regular check ups that detects problems like high or low blood pressures, diabetes and cancer.

Once detected, we treat the symptoms post haste resorting to either prolonged doses of medication or surgery or both, like in the case of cancer. But unfortunately, the chance of survival or prolonging life of a patient is rather low.

However, it is time we rethink our strategy of maintaining health of a human being or any machine or system.

We may do so by orienting our strategy to understand the dynamics of a disease. By doing so, our approach changes radically. For example. let us take Type 2 diabetes, which is becoming a global epidemic. Acute or chronic stress initiates or triggers the disease (Initiator). Poor or inadequate nutrition or wrong choice of food accelerates the process  (Accelerator) whereas taking regular physical exercise retards or slows down the process (Retarder). Worthwhile to mention that the Initiator(s), Accelerator (s) and Retarder (s) get together to produce changes that trigger of unhealthy or undesirable behavior or failure patterns. Such interactions, which I call ‘imperfections‘ between initiator (s), accelerator (s) and retarder (s) change the gene expression which gives rise to a disease, which often has to be treated over the entire lifecycle of a patient or system with a low probability of success.

The present strategy to fight diabetes is to modulate insulin levels through oral medication or injections to keep blood sugar to an acceptable level. It often proves to be a frustrating process for patients to maintain their blood sugar levels in this manner. But more importantly, the present strategy is not geared to reverse Type 2 diabetes or eliminate the disease.

The difference between the two approaches lies in the fact — “respond to the symptom” (high blood sugar) vs “respond to the “imperfection” — the interaction between Initiators, Accelerators and Retarders”. The response to symptom is done through constant monitoring and action based on the condition of the system, without attempting to take care of the inherent imperfections. On the other hand, the response to imperfections involve appropriate and adequate actions around the I, A, R s and monitoring their presence and levels of severity.

So a successful strategy to reverse diabetes would be to eliminate or avoid the initiator (or keep it as low as possible); weaken or eliminate the Accelerator and strengthen or improve the Retarder. A custom made successful strategy might be formulated by careful observation and analysis of the dynamics of the patient.

As a passing note, by following this simple strategy of addressing the “system imperfections“, I could successfully reverse my Type 2 Diabetes, which even doctors considered impossible. Moreover, the consequences of diabetes were also reversed.

Fixing diseases as and when they surface or appear is similar to Breakdown Maintenance strategy, which most industries adopt. Clearly, other than cases where the consequences of a failure is really low, adoption of this strategy is not beneficial in terms of maintenance effort, safety, availability and costs.

As a parallel in engineering, tackling a diseases through preventive measures is like Preventive Maintenance and Total Productive Maintenance — a highly evolved form of Preventive Maintenance. Though such a strategy can prove to be very useful to maintain basic operating conditions, the limitation, as in the case of human beings, is that it does not usually ensure successful ‘mission reliability’  (high chance of survival or prolonging healthy life to the maximum) as demonstrated by Waddington Effect. (You may refer to my posts on Waddington Effect here 1 and here 2)

Similarly, predictive strategy along with its follow up actions in medical science, is similar to Predictive Maintenance, Condition Based Maintenance and Reliability Centered Maintenance in engineering discipline. Though we can successfully avoid or eliminate the consequences of failures; improvement in reliability (extending MTBF — Mean Time Between Failures) or performance is limited to the degree of existing “imperfections” in the system (gene expression of the system), which the above strategies hardly address.

For the purpose of illustration of IAR method, you may like to visit my post on — Application of IAR technique

To summarize, a successful maintenance strategy that aims at zero breakdown and zero safety and performance failures and useful extension of MTBF of any system may be as follows:

  1. Observe the dynamics of the machine or system. This might be done by observing  energy flows or materials movement and its dynamics or vibration patterns or analysis of failure patterns or conducting design audits, etc. Such methods can be employed individually or in combination, which depends on the context.
  2. Understand the failures or abnormal behavior  or performance patterns from equipment history or Review of existing equipment maintenance plan
  3. Identify the Initiators, Accelerators and Retarders (IARs)
  4. Formulate a customized comprehensive strategy  and detailed maintenance and improvement plan around the identified IARs keeping in mind the action principles of elimination, weakening and strengthening the IARs appropriately. This ensures Reliability of Equipment Usage over the lifecycle of an equipment at the lowest possible costs and efforts. The advantage lies in the fact that once done, REU gives ongoing benefits to a manufacturing plant over years.
  5. Keep upgrading the maintenance plan, sensors and analysis algorithms based on new evidences and information. This leads to custom built Artificial Intelligence for any system that proves invaluable in the long run.
  6. Improve the system in small steps that give measureable benefits.By Dibyendu De

 

 

Sustainable Improvements in Resilient Manufacturing Systems

Few days back I was invited by an MNC to examine one of their manufacturing facilities.

The manager of the shop showed me around.

Seeing a wall-board full of photographs I asked, ‘What are these?’

‘These are some of the many improvements we have carried out in the facility’, he replied.

‘Can you show me some of these cases?’

‘No’, he replied. ‘These improvements don’t seem to stick. It is quite frustrating. Why do you think it happens like this?’  he queried.

‘It is simple’, I said. ‘Anything that changes with changing circumstances isn’t reality.’

‘What is to be done?’

Focus on things that don’t seem to change and focus on failures to permanently improve something that doesn’t change with changing circumstances. That is what sustainable improvement is all about, which in turn builds a resilient system’, I explained.